Menu fechado

Expressões algébricas ou literais

SAIA NA FRENTE!! APOSTILA PG-DF 2020

CONCURSOS ABERTOS NO BRASIL 2020

10 DICAS PARA PASSAR EM UM CONCURSO PÚBLICO

COMO ESTUDAR COM SONO

Expressões literais e algébricas

Expressões algébricas são expressões matemáticas que apresentam letras e podem conter números, são também denominadas expressões literais. As letras constituem a parte variável das expressões, pois elas podem assumir qualquer valor numérico. No passado as letras foram pouco utilizadas na representação de números desconhecidos, atualmente as letras associadas a números constituem a base da álgebra e contribui de forma eficiente na resolução de várias situações matemáticas. Veja alguns exemplos de expressões algébricas:

2x – 5

3a + 2y

x² + 7x

5 + x – (5x – 2)

10y – 10x

a² – 2ab + b²

Simplificação de Expressões Algébricas

►y + y + y = 3y —— pois os monômios são semelhantes (as letras são iguais e os seus expoentes também.

►m – 7m = -6m —— pois os monômios são semelhantes (as letras são iguais e os seus expoentes também.

►5 . (x + 2) – 8 . x ——– utilizando a propriedade distributiva

5x + 10 – 8x———- 5x e 8x são monômios semelhantes

-3x + 10———como -3x e 10 não são semelhantes então não pode somar.

Concluímos que:

5 . (x + 2) – 8 . x = -3x + 10

Prioridade das operações numa expressão algébrica

Nas operações em uma expressão algébrica, devemos obedecer a seguinte ordem:

Potenciação ou Radiciação

Multiplicação ou Divisão

CONCURSOS ABERTOS NO BRASIL 2020

10 DICAS PARA PASSAR EM UM CONCURSO PÚBLICO

COMO ESTUDAR COM SONO

10 DICAS DE COMO ESTUDAR E APRENDER

Adição ou Subtração

Observações quanto à prioridade:

Antes de cada uma das três operações citadas, deve-se realizar a operação que estiver dentro dos parênteses, colchetes ou chaves.

A multiplicação pode ser indicada por × ou por um ponto · ou às vezes sem sinal, desde que fique clara a intenção da expressão.

Muitas vezes devemos utilizar parênteses quando substituímos variáveis por valores negativos.

Exemplos:

Consideremos P=2A+10 e tomemos A=5. Assim

P = 2.5+10 = 10+10 = 20

Aqui A é a variável da expressão, 5 é o valor numérico da variável e 20 é o valor numérico da expressão indicada por P. Observe que ao mudar o valor de A para 9, teremos:

A = 2.9 + 10 = 18 + 10 = 28

Se A=9, o valor numérico de P=2A+10 é igual a 28.

Seja X=4A+2+B-7 e tomemos A=5 e B=7. Assim:

X = 4.5+2+7-7 = 20+2-0 = 22

Se A=5 e B=7, o valor numérico de X=4A+2+B-7, muda para 22.

Seja Y=18-C+9+D+8C, onde C= -2 e D=1. Então:

Y = 18-(-2)+9+1+8(-2) = 18+2+9+1-16 = 30-16 = 14

Se C=-2 e D=1, o valor numérico de Y=18-C+9+D+8C, é 14.

Conclusão: O valor numérico de uma expressão algébrica é o valor obtido na expressão quando substituímos a variável por um valor numérico.

Fontes: Brasil escola, Mundo Educação e Sercomtel

Dicas importantes:

 

Sei que é difícil encontrar todos os conteúdos na internet, por isso, para garantir sua aprovação eu recomendo fazer um curso online (Gran Cursos Online) ou adquirir uma apostila (Apostilas Opção).

 

Gran Curso Online: Milhares de videoaulas e PDF. 230 mil questões de concursos e com mais de 650 mil aprovados. Saiba mais!

 

Apostilas Opção: 26 anos no mercado, produzindo apostilas completas e atualizadas. Saiba mais! 

 

Deixe uma resposta

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *