Princípio de Avogadro
Lei de Avogadro
Amedeo Avogadro propôs, em 1811, uma lei relacionada ao volume molar de gases.
Volumes iguais, de quaisquer gases, nas mesmas condições de pressão e temperatura, apresentam a mesma quantidade de substâncias em mol (moléculas).
Volumes iguais de dois gases, nas mesmas condições de temperatura e pressão, possuem o mesmo número de moléculas. Essa lei que foi a origem do conceito de molécula está implícita no conceito de volume molar (a CNTP), pois 22,4 litros de qualquer gás possuem 6,02 x 1023moléculas.
Fórmula empírica (ou mínima)
Uma fórmula empírica conta as relações relativas de átomos diferentes em um composto (proporção). Assim, H2O é composto de dois átomos de hidrogênio e 1 átomo de oxigênio. Igualmente, 1.0 mol de H2O é composto de 2.0 mols de hidrogênio e 1.0 mol de oxigênio. Se sabemos as quantias molares de cada elemento em um composto, então podemos determinar a fórmula empírica.
Ex: o mercúrio forma um composto com o cloro que é 73,9% de mercúrio e 26,1% de cloro em massa. Qual é a fórmula empírica?
Digamos que temos uma amostra de 100 gramas deste composto. Então, a amostra contém 73,9 gramas de mercúrio e 26,1 gramas de cloro. Quantos moles de cada átomo representam as massas individuais?
Para o Mercúrio:(73,9 g) x (1 mol/200,59 g) = 0,368 mol
Para o Cloro:(26,1 g) x (1 mol/35,45 g) = 0,736 mol
Qual é a relação molar entre os dois elementos?
(0,736 mol Cl/0,368 mol Hg) = 2,0
Assim, nós temos duas vezes mais moles (isto é, átomos) de Cl que de Hg. A fórmula empírica seria assim (lembre-se de colocar o cátion primeiro e o ânion por último): HgCl2 .
Conceito de molécula
Uma molécula é a partícula mais pequena que apresenta todas as propriedades físicas e químicas de uma substância. As moléculas são formadas por dois ou mais átomos. Os átomos que constituem as moléculas podem ser do mesmo tipo (por exemplo, a molécula de oxigênio tem dois átomos de oxigênio) ou de tipo diferente (a molécula de água, por sua vez, tem dois átomos de hidrogênio e um de oxigênio).
As moléculas encontram-se em constante movimento, fenômeno que se conhece como vibrações moleculares (que podem ser de tensão ou de flexão). Os seus átomos mantêm-se unidos pelo facto de partilharem ou trocarem electrões.
Convém destacar que as moléculas podem ser neutras ou apresentar carga eléctrica. Neste último caso, dá-se-lhes o nome de ião-molécula ou ião poliatômico.
A química orgânica é um ramo da química que se ocupa de analisar as moléculas que contenham carbono e que formam ligações covalentes carbono-carbono ou carbono-hidrogênio, que também se denominam compostos orgânicos.
A bioquímica (ou química biológica), por sua vez, estuda os seres vivos a nível molecular. Desta forma, analisa as moléculas ao nível das células e dos tecidos e que permitem reações químicas como a fotossíntese e a digestão, entre outras.
Massa molar:
A massa molar é a massa em gramas de um mol de entidades elementares – átomos, moléculas, íons, elétrons, outras partículas ou outros grupos específicos de tais partículas. É representada pela letra “M” e expressa na unidade g/mol.
Relação entre massas atômica e molar
A massa molar de um elemento químico ou de uma substância é numericamente igual à massa atômica desse elemento ou do total das massas atômicas componentes da substância em unidades de massa atômica. Desta forma, conhecendo-se a massa atômica de um elemento (expressa em unidades de massa atômica, u.m.a.) ou dos elementos constituintes da substância, sabe-se também a sua massa molar – expressa em g/mol.1
Ex.: a massa atômica total da substância água, H2O = 18 u.m.a., logo M = 18 g/mol – massa de 6,02 x 1023 moléculas de água, do total de seus átomos.
Raramente as molares são listadas em tabelas, pois podem ser calculadas a partir das massas atômicas padrões, frequentemente listadas em catálogos químicos, tabelas periódicas ou em MSDS (Fichas de Segurança de Material). As massas molares normalmente variam entre:
- 1–238 g/mol para átomos de elementos que ocorrem naturalmente;
- 10–1000 g/mol para compostos químicos simples;
- 1000–5,000,000 g/mol para polímeros, proteínas, fragmentos de DNA, etc.
- Volume molar dos gases
-
CNTP: temperatura = 0 °C e pressão =1atm.
É o volume ocupado pelo mol de moléculas de um gás qualquer nessas condições. Verifica-se, experimentalmente, que seu valor é praticamente o mesmo para qualquer gás, e situa-se em torno de 22,4 litros.
Essa constância no volume molar de um gás explica-se pelo fato de os tamanhos das moléculas gasosas serem desprezíveis quando comparados com o espaço vazio que há entre elas. Assim, se um balão de gás for enchido com 2g de gás hidrogênio (massa de 1mol de moléculas H2) e submetido à pressão externa de 1 atm e à temperatura de 0°C, ele adquirirá o volume de 22,432 litros. Substituindo o gás hidrogênio por 28g de gás nitrogênio(massa de 1mol de moléculas N2),o volume será de 22,403 litros, e assim por diante.
Logo: 1mol de gás 6,02 x 1023 moléculas 22,4 litros (CNTP)
Mais uma outra postagem para reforçar o assunto:
Conceito de volume molar de gases: volume ocupado por um mol de qualquer gás, a uma determinada pressão e temperatura.
Volume molar = 22,4 L/mol
Onde a relação entre o volume e o número de mol é constante:
V = K * 22,4 litros de qualquer gás possuem 6,02 x 1023 moléculas.
nEsse valor é resultado de experimentos feitos em Condições Normais de Temperatura e Pressão (CNTP) – 1 atm e 0 °C.
O volume 22,4 litros é praticamente o mesmo para qualquer gás, isso se explica pelo fato de que o tamanho de uma molécula gasosa é desprezível se comparado com o espaço vazio que há entre elas.
Exemplo prático:
Se enchermos um balão com 28g de gás nitrogênio (massa de 1 mol de moléculas N2),o volume será de 22,403 litros (pressão externa de 1 atm e à temperatura de 0°C). Substituindo o gás N2 por 2 gramas de gás hidrogênio (massa de 1 mol de moléculas H2) e nas mesmas condições de temperatura e pressão (1 atm – 0°C), o balão adquire o volume de 22,432 litros, ou seja, o volume não altera em praticamente nada.