Conceitos de conjuntos
Conjunto vazio: é um conjunto que não possui elementos. O conjunto vazio é representado por { } ou .
Subconjuntos: quando todos os elementos de um conjunto A qualquer pertencem a um outro conjunto B, diz-se, então, que A é um subconjunto de B, ou seja AB. Observações:
- Todo o conjunto A é subconjunto dele próprio, ou seja
;
- O conjunto vazio, por convenção, é subconjunto de qualquer conjunto, ou seja
União de Conjuntos: dados os conjuntos A e B, define-se como união dos conjuntos A e B ao conjunto representado por , formado por todos os elementos pertencentes a A ou B, ou seja:
Intersecção de Conjuntos:dados os conjuntos A e B, define-se como intersecção dos conjuntos A e B ao conjunto representado por , formado por todos os elementos pertencentes a A e B, simultaneamente, ou seja:
Diferença de Conjuntos: dados os conjuntos A e B, define-se como diferença entre A e B (nesta ordem) ao conjunto representado por A-B, formado por todos os elementos pertencentes a A, mas que não pertencem a B, ou seja
Produto Cartesiano: dados os conjuntos A e B, chama-se produto cartesiano A com B, ao conjunto AxB, formado por todos os pares ordenados (x,y), onde x é elemento de A e y é elemento de B, ou seja
Número de subconjuntos de um conjunto: se um conjunto A possuir n elementos, então existirão 2n subconjuntos de A.
Esta matéria foi retirada do site Só Matemática
Operações com conjuntos:
A matéria abaixo foi retirada do site Brasil Escola
Exemplo de interseção de conjuntos.
►Interseção
Os elementos que fazem parte do conjunto interseção são os elementos comuns aos conjuntos relacionados.
Exemplo 1:
Dados dois conjuntos A = {5,6,9,8} e B = {0,1,2,3,4,5}, se pedimos a interseção deles teremos:
A ∩ B = {5}, dizemos que A “inter” B é igual a 5.
Exemplo 2:
Dados os conjuntos B = {-3, -4, -5, -6} e C = {-7, -8, -9}, se pedirmos a interseção deles teremos:
B ∩ C = { } ou B ∩ C = , então B e C são conjuntos distintos.
Exemplo 3:
Dados os conjuntos D = {1,2,3,4,5} e E = {3,4,5}. A interseção dos conjuntos ficaria assim:
E ∩ D = {3,4,5} ou E ∩ D = E, pode ser concluído também que
E D.
►União
Conjunto união são todos os elementos dos conjuntos relacionados.
Exemplo 1:
Dados os conjuntos A = { x | x é inteiro e -1 < x < 2} e B = {1,2,3,4} a união desses dois conjuntos é :
A U B = {0,1,2,3,4}
Exemplo 2:
Dados os conjuntos A = {1,2,3} e B = {1,2,3,4,5} a união desses conjuntos é:
A U B = {1,2,3,4,5}, nesse caso podemos dizer que A U B = B.
►Diferença entre dois conjuntos.
Dados dois conjuntos A e B chama-se conjunto diferença ou diferença entre A e B o conjunto formado pelos elementos de A que não pertencem a B.
O conjunto diferença é representado por A – B.
Exemplo 1:
A = {1,2,3,4,5} e B = {3,4,5,6,7} a diferença dos conjuntos é:
A – B = {1,2}
Exemplo 2:
A = {1,2,3,4,5} e B = {8,9,10} a diferença dos conjuntos é:
A – B = {1,2,3,4,5}
Exemplo 3:
A = {1,2,3} e B = {1,2,3,4,5}a diferença dos conjuntos é:
A – B =
Exemplo 4:
Dados os conjuntos A = {1,2,3,4,5,6} e B = {5,6}, a diferença dos conjuntos é:
A – B = {1,2,3,4}. Como B A podemos escrever em forma de complementar:
A – B = A B = {1,2,3,4}.
Por Danielle de Miranda
Graduada em Matemática
Equipe Brasil Escola
Veja mais!
Teoria dos conjuntos:as relações de pertinência, inclusão e igualdade