APOSTILA AGENTE DE CORREIOS - CARTEIRO 2024 - SAIA NA FRENTE!!
Argumentos válidos
A visão de que a Lógica é a ciência que estuda o raciocínio se deve à sua aplicação clássica na Grécia antiga. Na argumentação os elementos fundamentais são denominados de argumentos, ou como veremos neste tópico esquemas de argumentos. O papel da lógica é exatamente desvendar o que torna um argumento válido ou inválido.
A classificação de argumentos em válidos ou não é uma tarefa de extrema importância para distinguirmos quais deles estão relacionados a verdades no mundo(ainda que relativas).Tais argumentos chamamos usualmente de argumentos lógicos.
Alguns exemplos de argumentos lógicos são apresentados a seguir.
Exemplo 1:
- Se a demanda aumentar, então a empresa se expande
- Se as empresas se expandem, então elas empregam trabalhadores
- Se a demanda aumentar, então as empresas empregam trabalhadores
Exemplo 2:
- Todos os peixes são mamíferos.
- Moby Dick é um peixe
- Moby Dick é um mamífero
ARGUMENTOS LÓGICOS
Esses argumentos têm duas premissas e uma conclusão. Quem quer que aceite as premissas como sendo verdadeiras terá de aceitar que suas conclusões também são verdadeiras. Neste caso nós dizemos em lógica que a conclusão é uma consequência lógica das premissas. É difícil imaginar uma situação em que as premissas sendo verdadeiras não se tenha a conclusão como sendo também verdadeira. Entretanto, isso não quer dizer que o argumento lógico seja válido. Consideremos o seguinte exemplo.
Um argumento lógico que não é válido.
- Todos os cavalos são mamíferos.
- Todos os cavalos são vertebrados.
- Todos os mamíferos são vertebrados.
Neste exemplo, ambos, premissas e conclusão são fatos verdadeiros, mas isto não torna o argumento válido. Podemos falsificar o argumento se pegarmos um tipo de mamífero que não seja vertebrado por algum fator de evolução genética. Se formos transcrever esse argumento no seu diagrama de Euler-Venn para conjuntos, tomando o conjunto universo como sendo o dos animais, teremos um diagrama de acordo com o da Figura 2.1. Note que nada se pode afirmar, analisando as premissas do argumento, que vertebrados são um subconjunto do conjunto dos mamíferos e vice-versa. Apenas podemos visualizar que existe uma interseção entre ambos os conjuntos pois nas premissas fica claro que o conjunto dos cavalos é um subconjunto dos vertebrados e também dos mamíferos.
Figura 2.1: Diagrama de Venn para o argumento de Mamíferos e Vertebrados.
Mesmo assumindo como verdade universal que todo mamífero seja um vertebrado, as premissas se referem à relação entre cavalos e propriedades dos animais. Não há uma sentença no argumento ou um encadeamento de sentenças que associe o conjunto dos mamíferos com o dos vertebrados. Logo, não podemos inferir nenhuma relação entre as propriedades apenas com base na relação de pertinência entre uma classe de animais e estas.
ESQUEMAS DE ARGUMENTOS
Isso significa que do ponto de vista da linguagem, não existe uma relação de rivalidade entre as sentenças. E esta, por sua vez, está relacionada com a consequência lógica entre os fatos expressados pelas sentenças.
APOSTILA AGENTE DE CORREIOS - CARTEIRO 2024 - SAIA NA FRENTE!!
O que podemos concluir disto é que deve haver uma relação entre a linguagem que usamos para expressar um argumento e o que esses argumentos representam em relação ao mundo real. Esta relação é provida pela semântica da linguagem como mostra a Figura 2.2. Note que, a propriedade de um fato ser uma consequência lógica de outro fato no mundo real é espelhado na linguagem pela propriedade de uma sentença ser derivada de outra através de algum método de derivação ou cálculo.
Figura 2.2: Conexão entre sentenças de uma linguagem e fatos se dá pela semântica.
Um formalismo ou um cálculo que possa processar tal tarefa de forma automática deve oferecer mecanismos que nos possibilitem identificar as estruturas básicas desses argumentos. Tais estruturas são utilizadas para construirmos esquemas de argumentos e portanto podemos testar a validade dos mesmos como veremos a seguir.
ESQUEMAS DE ARGUMENTOS
Aristóteles foi um dos primeiros (se não o primeiro) a propor um método para representar padrões de raciocínio de forma que pudéssemos testar a consistência dos mesmos. Avaliando argumentos como o do Exemplo 1 ele observou que estes são na realidade uma composição de frases ou declarações, ou ainda proposições.
A frase “Se a demanda aumentar, então a empresa se expande” tem duas partes 1) “demanda aumentar” e 2) “empresa se expande”. Ambas as proposições são conectadas pelas palavras “Se” e “então”. No caso do Exemplo 3, as frases “A RL está mal configurada” e “o provedor Internet está desligado” são conectados pela palavra “ou”. A essas sentenças menores denominamos de proposições atômicas.
Argumentos como estes podem ser representados de forma esquemática se substituirmos as frases por variáveis proposicionais. No Exemplo 1, chamemos de P a primeira parte das proposições e Q a segunda e a frase “as empresas empregam trabalhadores” de R. Então podemos escrever o esquema:
Se P então Q.
Se Q então R.
__________
Se P então R.
Fonte: Lógica matemática
E você, qual o concurso você vai fazer? Deixe um comentário para mim, pois posso fazer postagens direcionadas para ele e te ajudar mais. Aproveita também para inscrever seu e-mail para receber conteúdos todos os dias.
Dica: Para você que não esta encontrando o conteúdo que precisa ou prefere estudar por apostilas dá uma olhada no site Apostilas Opção, lá eles tem praticamente todas as apostilas atualizadas de todos os concursos abertos. Caso queira saber por que indico as Apostilas Opção clique aqui!
proposições, conectivos, equivalência e implicação lógica
APOSTILA AGENTE DE CORREIOS - CARTEIRO 2024 - SAIA NA FRENTE!!