Menu fechado

Categoria: Matemática

Matrizes, determinantes e sistemas lineares – Parte 5

Sistemas Lineares III

Método de eliminação de Gauss ou método do escalonamento

Karl Friedrich Gauss – astrônomo, matemático e físico alemão – 1777/1855.

O método de eliminação de Gauss para solução de sistemas de equações lineares, também conhecido como escalonamento, baseia-se em três transformações elementares, a saber:

T1 – um sistema de equações não se altera, quando permutamos as posições de duas equações quaisquer do sistema.

Exemplo: os sistemas de equações lineares
2x + 3y = 10
5x – 2y = 6

5x – 2y = 6
2x + 3y = 10
são obviamente equivalentes, ou seja, possuem o mesmo conjunto solução. Observe que apenas mudamos a ordem de apresentação das equações.

Matrizes, determinantes e sistemas lineares – Parte 4

Sistemas Lineares I

1 – Equação linear

Entenderemos por equação linear nas variáveis (incógnitas) x1, x2, x3, … , x, como sendo a equação da forma
a1.x1 + a2.x2 + a3.x3 + … + an.xn = b onde a1, a2, a3, … an e b são números reais ou complexos.
a1, a2, a3, … an são denominados coeficientes e b, termo independente.

Nota: se o valor de b for nulo, diz-se que temos uma equação linear homogênea.

Exemplos de equações lineares:

2x1+3x2 =7(variáveis ou incógnitas x1 e x2,coeficientes 2 e 3,e termo independente7)

3x + 5y = 5 (variáveis ou incógnitas x e y, coeficientes 3 e 5, e termo independente 5)

2x + 5y + z = 17 (variáveis ou incógnitas x, y e z, coeficientes 2,5 e 1 e termo independente 17)

Matrizes, determinantes e sistemas lineares – Parte 3

Matrizes e Determinantes II

1 – Definições:

1.1 – Chama-se Menor Complementar ( D ij ) de um elemento aij de uma matriz quadrada A, ao determinante que se obtém eliminando-se a linha i e a coluna j da matriz.
Assim, dada a matriz quadrada de terceira ordem (3×3) A a seguir :

Podemos escrever:
D23 = menor complementar do elemento a23 = 9 da matriz A . Pela definição, D23 será igual ao determinante que se obtém de A, eliminando-se a linha 2 e a coluna 3, ou seja:

Matrizes, determinantes e sistemas lineares – Parte 2

DETERMINANTES

Entenderemos por determinante , como sendo um número ou uma função, associado a uma matriz quadrada , calculado de acordo com regras específicas .

É importante observar , que só as matrizes quadradas possuem determinante .

Regra para o cálculo de um determinante de 2ª ordem
Dada a matriz quadrada de ordem 2 a seguir:

  • O determinante de A será indicado por det(A) e calculado da seguinte forma :
  • det (A) = ½ A½ = ad – bc

Fatores primos

Fatores primos

Qualquer número inteiro positivo pode ser escrito univocamente como o produto de vários números primos (chamados fatores primos). Ao processo que recebe como argumento um número e devolve os seus fatores primos chama-se decomposição em fatores primos.

Exemplos

  • O fator primo de 6 é 2 e 3 (6 = 2 × 3).
  • 5 tem apenas um fator primo: ele mesmo (5 é número primo).
  • 100 tem dois fatores primos: 2 e 5 (100 = 2² × 5²).
  • 2, 4, 8, 16, etc. Cada um deles tem apenas único fator primo: 2. (2 é primo, 4 = 2², 8 = 2³, etc.)
  • 1 não tem fator primo.

Fonte: Wikipédia

Decomposição em fatores primos

 

Todo número natural, maior que 1, pode ser decomposto num produto de dois ou mais fatores.

Decomposição do número 24 num produto:
24 = 4 x 6
24 = 2 x 2 x 6
24 = 2 x 2 x 2 x 3 = 23 x 3

No produto 2 x 2 x 2 x 3 todos os fatores são primos.
Chamamos de fatoração de 24 a decomposição de 24 num produto de fatores primos. Então a fatoração de 24 é 23 x 3.

De um modo geral, chamamos de fatoração de um número natural, maior
que 1, a sua decomposição num produto de fatores primos.

  • Regra prática para a fatoração

Existe um dispositivo prático para fatorar um número. Acompanhe, no exemplo, os passos para montar esse dispositivo:

1º) Dividimos o número pelo seu menor divisor primo;

2º) a seguir, dividimos o quociente obtido pelo menor divisor primo desse quociente e assim sucessivamente até obter o quociente 1.A figura ao lado mostra a fatoração do número 630.

Decomposição

Então 630 = 2 x 3 x 3 x 5 x 7.
630 = 2 x 32 x 5 x 7.

Fonte: Só matemática

Números irracionais


No final da postagem tem uma videoaula para complementar o assunto.

Recomendo os seguintes links:

Como estudar para concursos públicos.

Conheça as características das principais bancas organizadoras de concursos públicos

Gostaria de lembrar também que tenho um livro de aventura que publiquei a versão final em e-book no Amazon, A fortaleza do Centro, dá uma olhadinha nele é muito legal.

Gostaria também de saber qual concurso você vai fazer, é só postar nos comentários

Abraços e bons estudos!


Os Números Irracionais (I) fazem parte do conjunto dos Números Reais (R) junto com os Números Racionais (Q),

Números reais

Números Reais

O conjunto dos números reais surge para designar a união do conjunto dos números racionais e o conjunto dos números irracionais. É importante lembrar que o conjunto dos números racionais é formado pelos seguintes conjuntos: Números Naturais e Números Inteiros. Vamos exemplificar os conjuntos que unidos formam os números reais. Veja:

Números Naturais (N): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ….
Números Inteiros (Z): …, –8, –7, –6, –5, –4, –3, – 2, –1, 0, 1, 2, 3, 4, 5, 6, 7, 8, …..
Números Racionais (Q): 1/2, 3/4, 0,25, –5/4,
Números Irracionais (I): √2, √3, –√5, 1,32365498…., 3,141592….

Podemos concluir que o conjunto dos números reais é a união dos seguintes conjuntos:

N U Z U Q U IR ou Q U IR

Os números reais podem ser representados por qualquer número pertencente aos conjuntos da união acima. Essas designações de conjuntos numéricos existem no intuito de criar condições de resolução de equações e funções, as soluções devem ser dadas obedecendo aos padrões matemáticos e de acordo com a condição de existência da incógnita na expressão.

Por Marcos Noé
Graduado em Matemática
Equipe Brasil Escola

Coloquei mais um pouco da matéria para você que quer aprofundar mais no assunto:

O conjunto dos números reais é formado pela união entre o conjunto dos números racionais e o conjunto dos números irracionais. Existem várias propriedades a respeito dos números reais, que são extensões das propriedades dos números racionais. Essas propriedades estão relacionadas com a ordem dos números reais e com o estudo das operações matemáticas básicas aplicadas aos elementos desse conjunto.

A definição dos números reais depende das definições dos conjuntos dos números racionais e irracionais, que, por sua vez, dependem da definição dos números inteiros. Dessa maneira, todos os números geralmente estudados até o final do Ensino Fundamental e início do Ensino Médio são os números reais.

De posse da definição de números reais, discutiremos as propriedades mais importantes relacionadas com esse conjunto numérico.

Propriedades do conjunto dos números reais

As propriedades a seguir são decorrentes da definição dos números reais e também da inclusão das operações “adição” e “multiplicação” entre os elementos desse conjunto.

O conjunto dos números reais é um conjunto completo

Existe uma relação feita entre o conjunto dos números reais e a reta numérica, que é construída da seguinte maneira: para cada número real, existe um e apenas um ponto representando-o na reta numérica. É possível mostrar que a reta não contém nenhum “furo”, isto é, ponto que não represente número real algum. Portanto, o conjunto dos números reais é completo.

O conjunto dos números reais é um conjunto ordenado

Ainda avaliando a reta numérica, comparando dois números reais quaisquer, aquele que estiver mais à esquerda é menor do que aquele que estiver mais à direita. Além disso, se estiverem no mesmo ponto, serão iguais. Essa é a ordenação do conjunto dos números reais representada na reta numérica.

Propriedades operatórias dos números reais

Dados os números reais “a”, “b” e “c”, as seguintes propriedades operatórias são válidas:

1 – Associatividade:

a·(b·c) = (a·b)·c

a + (b + c) = (a + b) + c

2 – Comutatividade:

a·b = b·a

a + b = b + a

3 – Existência de elemento neutro único para a soma e para a multiplicação:

a + 0 = a

a·1 = a

4 – Existência de elemento inverso único para a soma e para a multiplicação:

a + (– a) = 0

1 = 1
a

5 – Distributividade:

a · (b + c) = a·b + a·c
Por Luiz Paulo Moreira
Graduado em Matemática

Números inteiros

Números inteiros

Introdução aos números inteiros

Na época do Renascimento, os matemáticos sentiram cada vez mais a necessidade de um novo tipo de número, que pudesse ser a solução de equações tão simples como:

x + 2 = 0, 2x + 10 = 0, 4y + 4 = 0

As Ciências precisavam de símbolos para representar temperaturas acima e abaixo de 0º C, por exemplo. Os astrônomos e físicos estavam procurando uma linguagem matemática capaz de expressar o movimento de atração entre dois corpos. Quando um corpo age com uma força sobre outro corpo, este reage com uma força de mesma intensidade e sentido contrário.

Mas a tarefa não ficava somente em criar um novo número, era preciso encontrar um símbolo que permitisse operar com esse número criado, de modo prático e eficiente.

Sobre a origem dos sinais

A idéia sobre os sinais vem dos comerciantes da época. Os matemáticos encontraram a melhor notação para expressar esse novo tipo de número. Veja como faziam tais comerciantes:

Suponha que um deles tivesse em seu armazém duas sacas de feijão com 10 kg cada. Se esse comerciante vendesse num dia 8 Kg de feijão, ele escrevia o número 8 com um traço (semelhante ao atual sinal de menos) na frente para não se esquecer de que no saco faltava 8 Kg de feijão.

Mas se ele resolvesse despejar no outro saco os 2 Kg que restaram, escrevia o número 2 com dois traços cruzados (semelhante ao atual sinal de mais) na frente, para se lembrar de que no saco havia 2 Kg de feijão a mais que a quantidade inicial.

Com essa nova notação,os matemáticos poderiam, não somente indicar as quantidades, mas também representar o ganho ou a perda dessas quantidades, através de números, com sinal positivo ou negativo.

O conjunto Z dos Números Inteiros

Definimos o conjunto dos números inteiros como a reunião do conjunto dos números naturais{1, 2, 3…}, o conjunto dos opostos dos números naturais{ -1, -2, …} e o zero. Este conjunto é denotado pela letra Z (Zahlen=número em alemão). Este conjunto pode ser escrito por:

Z = {…, -4, -3, -2, -1, 0, 1, 2, 3, 4,…}

Exemplos de subconjuntos do conjunto Z:

Conjunto dos números inteiros exceto o número zero:

Z* = {…, -4, -3, -2, -1, 1, 2, 3, 4,…}

Conjunto dos números inteiros não negativos:

Z+ = {0, 1, 2, 3, 4,…}

Conjunto dos números inteiros não positivos:

Z- = {…, -4, -3, -2, -1, 0}

Observação: Não existe padronização para estas notações.

Reta Numerada

Uma forma de representar geometricamente o conjunto Z é construir uma reta numerada, considerar o número 0 como a origem e o número 1 em algum lugar, tomar a unidade de medida como a distância entre 0 e 1 e por os números inteiros da seguinte maneira:

Ao observar a reta numerada notamos que a ordem que os números inteiros obedecem é crescente da esquerda para a direita, razão pela qual indicamos com uma seta para a direita. Esta consideração é adotada por convenção, o que nos permite pensar que se fosse adotada outra forma, não haveria qualquer problema.

Baseando-se ainda na reta numerada podemos afirmar que todos os números inteiros possuem um e somente um antecessor e também um e somente um sucessor.

Ordem no conjunto Z

O sucessor de um número inteiro é o número que está imediatamente à sua direita na reta (em Z) e o antecessor de um número inteiro é o número que está imediatamente à sua esquerda na reta (em Z).

Exemplos:

3 é sucessor de 2;

-5 é antecessor de -4

0 é antecessor de 1

-1 é sucessor de -2

Simetria no conjunto Z

Todo número inteiro z exceto o zero, possui um elemento denominado simétrico ou oposto -z e ele é caracterizado pelo fato geométrico que tanto z como -z estão à mesma distância da origem do conjunto Z que é 0.

Exemplos:

O oposto de ganhar é perder;

O oposto de perder é ganhar;

O oposto de 3 é -3

O oposto de 5 é -5

Módulo de um número Inteiro

O módulo ou valor absoluto de um número Inteiro é definido como sendo o maior valor entre um número e seu elemento oposto e pode ser denotado pelo uso de duas barras verticais | |. Assim:

|x| = max{-x,x}

Exemplos:

|0| = 0

|8| = 8

|-6| = 6

Observação: Do ponto de vista geométrico, o módulo de um número inteiro corresponde à distância deste número até a origem (zero) na reta numérica inteira.

A soma (adição) de números inteiros

Para melhor entendimento desta operação, associaremos aos números inteiros positivos a idéia de ganhar e aos números inteiros negativos a idéia de perder.

ganhar 3 + ganhar 4 = ganhar 7

(+3) + (+4) = (+7)

perder 3 + perder 4 = perder 7

(-3) + (-4) = (-7)

ganhar 8 + perder 5 = ganhar 3

(+8) + (-5) = (+3)

perder 8 + ganhar 5 = perder 3

(-8) + (+5) = (-3)

Atenção: O sinal (+) antes do número positivo pode ser dispensado, mas o sinal (-) antes do número negativo nunca pode ser dispensado.

Exemplos:

-3 + 3 = 0

6 + 3 = 9

5 – 1 = 4

Propriedades da adição de números inteiros

Fecho: O conjunto Z é fechado para a adição, isto é, a soma de dois números inteiros ainda é um número inteiro.

Associativa: Para todos a,b,c em Z:

a + ( b + c ) = ( a + b ) + c

2 + ( 3 + 7 ) = ( 2 + 3 ) + 7

Comutativa: Para todos a,b em Z:

a + b = b + a

3 + 7 = 7 + 3

Elemento neutro: Existe 0 em Z, que adicionado a todo z em Z, proporciona o próprio z, isto é:

z + 0 = z

7 + 0 = 7

Elemento oposto: Para todo z em Z, existe (-z) em Z, tal que

z + (-z) = 0

9 + (-9) = 0

A Multiplicação (produto) de números inteiros

A multiplicação funciona como uma forma simplificada de uma adição quando os números são repetidos. Poderiamos analisar tal situação como o fato de estarmos ganhando repetidamente alguma quantidade, como por exemplo, ganhar 1 objeto por 30 vezes consectivas, significa ganhar 30 objetos e esta repetição pode ser indicada por um x, isto é:

1 + 1 + 1 + … + 1 + 1 = 30 x 1 = 30

Se trocarmos o número 1 pelo número 2, teremos:

2 + 2 + 2 + … + 2 + 2 = 30 x 2 = 60

Se trocarmos o número 2 pelo número -2, teremos:

(-2) + (-2) + … + (-2) = 30 x (-2) = -60

Observamos então que a multiplicação é um caso particular da adição onde os valores são repetidos.

Na multiplicação o produto dos números a e b, pode ser indicado por axb, a.b ou ainda ab sem nenhum sinal entre as letras.

Para realizar a multiplicação de números inteiros, devemos obedecer à seguinte regra de sinais:

(+1) x (+1) = (+1)

(+1) x (-1) = (-1)

(-1) x (+1) = (-1)

(-1) x (-1) = (+1)

Podemos assim concluir que:

Sinais iguais produto de inteiros é positivo.

Sinais diferentes produto de inteiros é negativo.

Propriedades da multiplicação de números inteiros

Fecho: O conjunto Z é fechado para a multiplicação, isto é, a multiplicação de dois números inteiros ainda é um número inteiro.

Associativa: Para todos a,b,c em Z:

a x ( b x c ) = ( a x b ) x c

2 x ( 3 x 7 ) = ( 2 x 3 ) x 7

Comutativa: Para todos a,b em Z:

a x b = b x a

3 x 7 = 7 x 3

Elemento neutro: Existe 1 em Z, que multiplicado por todo z em Z, proporciona o próprio z, isto é:

z x 1 = z

7 x 1 = 7

Elemento inverso: Para todo z em Z, z diferente de zero, existe z-1=1/z em Z, tal que

z x z-1 = z x (1/z) = 1

9 x 9-1 = 9 x (1/9) = 1

Propriedade mista (distributiva)

Distributiva: Para todos a,b,c em Z:

a x ( b + c ) = ( a x b ) + ( a x c )

3 x ( 4 + 5 ) = ( 3 x 4 ) + ( 3 x 5 )

Potenciação de números inteiros

Definição: A potência an do número inteiro a, é definida como um produto de n fatores iguais. O número a é denominado a base e o número n é o expoente.

an = a x a x a x a x … x a

n vezes

Exemplos:

23 = 2 x 2 x 2 = 8

(-2)3 = (-2) x (-2) x (-2) = (-8)

(-5)2 = (-5) x (-5) = 25

(+5)2 = (+5) x (+5) = 25

com os exemplos acima, podemos observar que a potência de todo número inteiro elevado a um expoente par é um número positivo e a potência de todo número inteiro elevado a um expoente ímpar é um número que conserva o seu sinal.

Observação: Quando o expoente é n=2, a potência a2 pode ser lida como: “a elevado ao quadrado” e quando o expoente é n=3, a potência a3 pode ser lida como: “a elevado ao cubo”. Tais leituras são provenientes do fato que área do quadrado pode ser obtida por A=a2 onde a é o lado e o volume do cubo pode ser obtido por V=a3 onde a é o lado do cubo.

Radiciação de números inteiros

Definição: A raiz n-ésima (de ordem n) de um número inteiro a é a operação que resulta em um outro número inteiro não negativo b que elevado à potência n fornece o número a. O número n é o índice da raiz enquanto que o número a é o radicando (que fica sob o sinal do radical). Leia a observação seguinte para entender as razões pelas quais não uso o símbolo de radical neste trabalho.

Observação: Por deficiência da própria linguagem HTML, que até hoje não implementou o sinal de raiz n-ésima, usarei aqui Rn[a] para indicar a raiz n-ésima de a. Quando n=2, simplesmente indicarei a raiz de ordem 2 de um número inteiro a como R[a].

Dessa forma, b é a raiz n-ésima de a se, e somente se, a=bn, isto é:

b = Rn[a] <=> a = bn

Definição: A raiz quadrada (de ordem 2) de um número inteiro a é a operação que resulta em um outro número inteiro não negativo que elevado ao quadrado seja igual ao número a.

Observação importante: Não existe a raiz quadrada de um número inteiro negativo no conjunto dos números inteiros. A existência de um número cujo quadrado é igual a um número negativo só será estudada mais tarde no contexto dos números complexos.

Erro muito comum: Freqüentemente lemos em alguns materiais didáticos e até mesmo ocorre em algumas aulas aparecimento de:

R[9] = ±3

mas isto está errado. O certo é:

R[9] = +3

Observamos que não existe um número inteiro não negativo que multiplicado por ele mesmo resulte em um número negativo.

Definição: A raiz cúbica (de ordem 3) de um número inteiro a é a operação que resulta em um outro número inteiro que elevado ao cubo seja igual ao número a. Aqui não restringimos os nossos cálculos somente aos números não negativos.

Exemplos:

R3[8] = 2, pois 23 = 8.

R3[-8] = -2, pois (-2)3 = -8.

R3[27] = 3, pois 33 = 27.

R3[-27] = -3, pois (-3)3 = -27.

Observação: Obedecendo à regra dos sinais para a multiplicação de números inteiros, concluímos que:

Se o índice da raiz for par, não existe raiz de número inteiro negativo.

Se o índice da raiz for ímpar, é possível extrair a raiz de qualquer número inteiro.

Este texto foi retirado do site Cola na Web

Números Naturais

Números naturais

No final da postagem coloquei uma videoaula.

Pertencem ao conjunto dos naturais os números inteiros positivos, incluindo o zero. Esse conjunto é representado pela letra N maiúscula. Os elementos dos conjuntos devem estar sempre entre chaves.
N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, … }

– Quando for representar o Conjunto dos Naturais não nulos (excluindo o zero) devemos colocar * ao lado do N.
Representado assim:
N* = {1, 2,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12, … }

A reticência indica que sempre é possível acrescentar mais um elemento.
N = {0, 1, 2, 3, 4, 5, 6, …} ou N = {0, 1, 2, 3, 4, 5, 6, 7, … }

Qualquer que seja o elemento de N, ele sempre tem um sucessor. Também falamos em antecessor de um número.
• 6 é o sucessor de 5.
• 7 é o sucessor de 6.
• 19 é antecessor de 20.
• 47 é o antecessor de 48.
Como todo número natural tem um sucessor, dizemos que o conjunto N é infinito.

Quando um conjunto é finito?
O conjunto dos números naturais maiores que 5 é infinito: {6, 7, 8, 9, …}
Já o conjunto dos números naturais menores que 5 é finito: {0, 1, 2, 3, 4}
Veja mais alguns exemplos de conjuntos finitos.
• O conjunto dos alunos da classe.
• O conjunto dos professores da escola.
• O conjunto das pessoas que formam a população brasileira.

Por Danielle de Miranda
Graduada em Matemática
Equipe Brasil Escola

E você, qual o concurso você vai fazer? Deixe um comentário para mim, pois posso fazer postagens direcionadas para ele e te ajudar mais. Aproveita também para inscrever seu e-mail para receber conteúdos todos os dias.

Dica: Para você que não esta encontrando o conteúdo que precisa ou prefere estudar por apostilas dá uma olhada no site Apostilas Opção, lá eles tem praticamente todas as apostilas atualizadas de todos os concursos abertos. Caso queira saber por que indico as Apostilas Opção clique aqui!

Representação por diagramas: Diagramas de Venn (Diagramas Lógicos)

Diagramas lógicos – Diagrama de Venn

 

Leia/ assista o vídeo até o final que resolverei 2 questões de concursos para você entender melhor

Os diagramas lógicos são usados para representar as proposições de um raciocínio lógico.

Se preferir, no vídeo abaixo tem a postagem em áudio e vídeo:

As questões de raciocínio lógico que usam os diagramas utilizam os quantificadores:

Produto cartesiano


Ao final da postagem tem uma videoaula.

Recomendo os seguintes links:

Como estudar para concursos públicos.

Conheça as características das principais bancas organizadoras de concursos públicos

Gostaria de lembrar também que tenho um livro de aventura que publiquei a versão final em e-book no Amazon, A fortaleza do Centro, dá uma olhadinha nele é muito legal.

Gostaria também de saber qual concurso você vai fazer, é só postar nos comentários

Abraços e bons estudos!


O produto cartesiano de dois conjuntos A e B são todos os pares ordenados (x, y), sendo que x pertence ao conjunto A e y pertence ao conjunto B.

Sistema métrico decimal

No final da postagem coloquei uma videoaula.

Recomendo os seguintes links:

Como estudar para concursos públicos.

Conheça as características das principais bancas organizadoras de concursos públicos

E você, qual o concurso você vai fazer? Deixe um comentário para mim, pois posso fazer postagens direcionadas para ele e te ajudar mais. Aproveita também para inscrever seu e-mail para receber conteúdos todos os dias.

Dica: Para você que não esta encontrando o conteúdo que precisa ou prefere estudar por apostilas dá uma olhada no site Apostilas Opção, lá eles tem praticamente todas as apostilas atualizadas de todos os concursos abertos. Caso queira saber por que indico as Apostilas Opção clique aqui!

Bons estudos!

SISTEMA MÉTRICO DECIMAL

* Definição

Desigualdades

A desigualdade é importante para a matemática, principalmente nas experiências e nos problemas que abordam a necessidade de se comparar um conjunto de medidas. É a partir desse procedimento que podemos compreender como uma inequação é construída e quais são as principais regras para a sua resolução.

Um bom exemplo para ilustrar esse procedimento de comparar medidas desiguais é a leitura da temperatura durante o dia. A flutuação nas medidas da temperatura ocorrerá em função do horário e do local. Na prática, registramos essa flutuação indicando uma temperatura mínima e uma máxima, construindo, dessa forma, a idéia de intervalo, que ajuda a organizar a nossa análise nesse tipo de experiência.

Assim, numericamente, se imaginarmos uma cidade com a temperatura mínima de 20o C e a máxima de 32o C, representaremos a temperatura por T e utilizaremos os símbolos convencionais de maior ou igual () e de menor ou igual ) para escrever a frase que expresse a temperatura dessa cidade:

 Página 3

Um outro exemplo interessante é sobre a variação do número de habitantes de uma cidade. Vamos imaginar a população de uma cidade no período de uma década: a quantidade mínima foi de dois milhões de pessoas e a máxima de quatro milhões. Considerando N o número de habitantes que moram na cidade, escrevemos:

 Página 3

Nesse exemplo, podemos introduzir mais dados para ampliar o conceito de inequação. Se, para essa cidade, nessa mesma década, houver um fluxo de saída de 500.000 habitantes por dia, para trabalhar em outras cidades mais próximas, mas retornando no final do dia, então podemos concluir que a população que permanece na cidade durante todo o dia fica no intervalo entre um milhão e meio e três milhões e meio de pessoas.

O número de habitantes que não saem da cidade durante todo o dia pode ser definido por F, lembrando que F = N – 500 000. Assim, temos:

 Página 3
 Página 3

Agora, se incluirmos no problema a informação de que um quinto de F é formado por idosos, então poderemos definir D como a quantidade de idosos e escrever a relação entre essas duas quantidades com D = F/5.

 Página 3

Reescrevendo, em função de N substituímos D por (N – 500 000)/5 e temos:

 Página 3

Esse exemplo mostra a forma como organizamos a análise de um problema construindo uma inequação. Os procedimentos são semelhantes à construção das equações, com o rico detalhe de que estamos interpretando o que é variável.

Há outras situações em que essas experiências matemáticas podem ser expressas fora de um intervalo. Ainda no nosso exemplo, vamos imaginar um sociólogo realizando uma pesquisa em relação aos hábitos da população, utilizando a renda mensal como referência. Nesse estudo, o sociólogo define que a sua pesquisa está voltada para as pessoas com a renda mensal menor ou igual a 300 dólares ou maior ou igual a 1.000 dólares, representando essa variável pela letra R:

 Página 3

Para concluir este nosso passeio intelectual pelos princípios que constroem uma inequação, esse sociólogo chega à conclusão de que grande parte da população de baixa renda com R  300 é idosa. Na elaboração final do seu relatório, ele escreverá as duas inequações da sua pesquisa: uma em relação à variação do número de idosos na cidade – e a outra em relação à renda mensal deles:

 Página 3

A inequação é mais um recurso da linguagem matemática para organizarmos problemas, situações ou experiências matemáticas. A desigualdade é uma conseqüência muito mais comum do que a igualdade. E isso acontece porque, por mais precisos que sejam os instrumentos, as medidas sempre serão variáveis. Assim, não esqueça que, ao comparar duas quantidades, tentando concluir qual delas é maior ou menor, você estará utilizando o princípio da inequação.

Fonte: Educação uol

Números e grandezas proporcionais: razões e proporções

Tenho outra postagem caso queira dar uma olhada também: Razões e proporções

Introdução: 

Há muitas situações cotidianas, seja na vida cotidiana, na ciência ou negócios que requerem o uso de razões e proporções. Por exemplo, na cozinha, se há a intenção de acrescentar ou diminuir algum ingrediente, as razões e proporções são usadas para determinar isso – “3 ovos para cada suas duas colheres de farinha”.

Pode-se verificar outro uso quando farmacêuticos ministram medicamentos, eles devem ter muita atenção às proporções dos fármacos.


Razão

A etimologia latina de razão, ratio, não possui ralação com a ideia de faculdade que permite a distinguir a relação entre as coisas da realidade ou juízo, mas sim a ideia de quociente, divisão, a noção que a matemática assimilou. Por isso,razão é o quociente entre dois números A e B, com B ≠ 0. Assim, a razão entre os números A e B pode ser dita “razão de A para B” e representada como:

Razão entre os números A e B

Uma razão também pode identificada pela representação A : B. É importante saber que, em uma razão, A sempre será chamado