Menu fechado

Funções do 1º e 2º graus – Problemas

APOSTILA CRM-MS 2020

APOSTILAS PARA PREFEITURA RUY BARBOSA - BA 2020

CONCURSOS ABERTOS NO BRASIL 2020

10 ERROS COMUNS QUE OS CONCURSEIROS DEVEM EVITAR

10 DICAS DE COMO ESTUDAR E APRENDER

10 DICAS PARA PASSAR EM UM CONCURSO PÚBLICO

COMO ESTUDAR COM SONO

Problemas envolvendo função de 1º grau

As funções são utilizadas na representação cotidiana de situações que envolvam valores constantes e variáveis, sempre colocando um valor em função do outro. Por exemplo, ao abastecermos o carro no posto de gasolina, o preço a ser pago depende da quantidade de litros de combustível colocada no tanque. Abordaremos as situações problemas ligadas às equações do 1º grau, respeitando a lei de formação f(x) = ax + b, com a ≠ 0.

Exemplo 1
Um motorista de táxi cobra R$ 3,50 de bandeirada (valor fixo) mais R$ 0,70 por quilômetro rodado (valor variável). Determine o valor a ser pago por uma corrida relativa a um percurso de 18 quilômetros.

Função que define o valor a ser cobrado por uma corrida de x quilômetros: f(x) = 0,70x + 3,50.

Valor a ser pago por uma corrida de percurso igual a 18 quilômetros.
f(x) = 0,70x + 3,50
f(18) = 0,70 * 18 + 3,50
f(18) = 12,60 + 3,50
f(18) = 16,10

O preço a ser pago por uma corrida com percurso igual a 18 quilômetros corresponde a R$ 16,10.

Exemplo 2

O preço de venda de um livro é de R$ 25,00 a unidade. Sabendo que o custo de cada livro corresponde a um valor fixo de R$ 4,00 mais R$ 6,00 por unidade, construa uma função capaz de determinar o lucro líquido (valor descontado das despesas) na venda de x livros, e o lucro obtido na venda de 500 livros.

Venda = função receita
R(x) = 25 * x

Fabricação: função custo
C(x) = 6 * x + 4

Lucro = receita – custo
L(x) = 25x – (6x + 4)
L(x) = 25x – 6x – 4
L(x) = 19x – 4

Lucro líquido será determinado pela função: L(x) = 19x – 4.

Lucro na venda de 500 livros

L(500) = 19 * 500 – 4
L(500) = 9 496

O lucro obtido na venda de 500 livros é de R$ 9 496,00.

Exemplo 3

O salário de um vendedor é composto de uma parte fixa no valor de R$ 800,00, mais uma parte variável de 12% sobre o valor de suas vendas no mês. Caso ele consiga vender R$ 450 000,00, calcule o valor de seu salário.

f(x) = 12% de x (valor das vendas mensais) + 800 (valor fixo)
f(x) = 12/100 * x + 800
f(x) = 0,12x + 800

f(450 000) = 0,12 * 450 000 + 800
f(450 000) = 54 000 + 800
f(450 000) = 54 800

O salário do vendedor será de R$ 54 800,00.

Fonte: Mundo Educação

 

Problemas envolvendo função de 2º grau

APOSTILA CRM-MS 2020

APOSTILAS PARA PREFEITURA RUY BARBOSA - BA 2020

CONCURSOS ABERTOS NO BRASIL 2020

10 ERROS COMUNS QUE OS CONCURSEIROS DEVEM EVITAR

10 DICAS DE COMO ESTUDAR E APRENDER

10 DICAS PARA PASSAR EM UM CONCURSO PÚBLICO

COMO ESTUDAR COM SONO

As funções do 2º grau possuem diversas aplicações na Matemática e auxiliam a Física em diversas situações nos movimentos de corpos na área da Cinemática e Dinâmica. A sua lei de formação, onde f(x) = ax² + bx + c, descreve uma trajetória parabólica de concavidade voltada para cima (decrescente – ponto mínimo) ou concavidade voltada para baixo (crescente – ponto máximo). Observe a resolução de situações problemas a seguir:

Exemplo 1

O movimento de um projétil, lançado para cima verticalmente, é descrito pela equação y = – 40x² + 200x. Onde y é a altura, em metros, atingida pelo projétil x segundos após o lançamento. A altura máxima atingida e o tempo que esse projétil permanece no ar correspondem, respectivamente, a:

Resolução:

Veja o gráfico do movimento:

 

O objeto atingiu a altura máxima de 250 metros.

Utilizaremos a expressão Xv para obter o tempo de subida do objeto:

O projétil levou 2,5s para atingir altura máxima, levando mais 2,5s para retornar ao solo, pois no movimento vertical o tempo de subida é igual ao tempo de descida. Portanto, o projétil permaneceu por 5 s no ar.

Exemplo 2

Um objeto foi lançado do topo de um edifício de 84 m de altura, com velocidade inicial de 32 m/s. Quanto tempo ele levou para chegar ao chão? Utilize a expressão matemática do 2º grau d = 5t² + 32t, que representa o movimento de queda livre do corpo.

Resolução:

O corpo percorreu a distância de 84 m que corresponde à altura do edifício. Portanto, ao substituirmos d = 84, basta resolvermos a equação do 2º grau formada, determinando o valor do tempo t, que será a raiz da equação.

 

 

 

 

 

 

Dicas importantes:

 

Gran Curso Online: Milhares de videoaulas e PDF. 230 mil questões de concursos e com mais de 650 mil aprovados. Saiba porque recomendo!

 

Apostilas Opção: 26 anos no mercado, produzindo apostilas completas e atualizadas. Saiba por que recomendo! 

2 Comentários

Deixe uma resposta

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *