Menu fechado

Números relativos inteiros e fracionários, operações e propriedades – Parte 4

APOSTILA PARA TODOS OS CARGOS PC-ES 2019

APOSTILA PARA TODOS OS CARGOS PREFEITURA DE CURITIBA 2019

APOSTILA PARA PROFESSOR ADJ.ED. INFANTIL SME-RJ 2019

APOSTILA PARA TODOS OS CARGOS SMS-RJ 2019

PROPRIEDADE DA ADIÇÃO

1) Fechamento : a soma de dois números inteiros é sempre um número inteiro

exemplo (-4) + (+7) =( +3)

2) Comutativa: a ordem das parcelas não altera a soma.

exemplo: (+5) + (-3) = (-3) + (+5)

3) Elemento neutro: o número zero é o elemento neutro da adição.

exemplo: (+8) + 0 = 0 + (+8) = +8

4) Associativa: na adição de três números inteiros, podemos associar os dois primeiros ou os dois últimos, sem que isso altere o resultado.

exemplo: [(+8) + (-3) ] + (+4) = (+8) + [(-3) + (+4)]

5) Elemento oposto: qualquer número inteiro admite um simétrico ou oposto.

exemplo: (+7) + (-7) = 0

ADIÇÃO DE TRÊS OU MAIS NÚMEROS

Para obter a soma de três ou mais números adicionamos os dois primeiros e, em seguida, adicionamos esse resultado com o terceiro, e assim por diante.

exemplos

1) -12 + 8 – 9 + 2 – 6 =
= -4 – 9 + 2 – 6 =
= -13 + 2 – 6 =
= -11 – 6 =
= -17

2) +15 -5 -3 +1 – 2 =
= +10 -3 + 1 – 2 =
= +7 +1 -2 =
= +8 -2 =
= +6

Na adição de números inteiros podemos cancelar números opostos, poque a soma deles é zero.

INDICAÇÃO SIMPLIFICADA

a) podemos dispensar o sinal de + da primeira parcela quando esta for positiva.

exemplos

a) (+7) + (-5) = 7 – 5 = +2

b) (+6) + (-9) = 6 – 9 = -3

APOSTILA PARA GUARDA CIVIL PREF. NITERÓI 2019

APOSTILA PARA DPE-RJ 2019

APOSTILA PREPARATÓRIA PARA INSS - TEC. SEGURO SOCIAL

APOSTILAS PARA TODOS OS CARGOS UFPB 2019

b) Podemos dispensar o sinal + da soma quando esta for positiva

exemplos

a) (-5) + (+7) = -5 + 7 = 2

b) (+9) + (-4) = 9 – 4 = 5

EXERCÍCIOS

1) Calcule

a) 4 + 10 + 8 = (R: 22)
b) 5 – 9 + 1 = (R: -3)
c) -8 – 2 + 3 = (R: -7)
d) -15 + 8 – 7 = (R: -14)
e) 24 + 6 – 12 = (R:+18)
f) -14 – 3 – 6 – 1 = (R: -24)
g) -4 + 5 + 6 + 3 – 9 = (R: + 1)
h) -1 + 2 – 4 – 6 – 3 – 8 = (R: -20)
i) 6 – 8 – 3 – 7 – 5 – 1 + 0 – 2 = (R: -20)
j) 2 – 10 – 6 + 14 – 1 + 20 = (R: +19)
L) -13 – 1 – 2 – 8 + 4 – 6 – 10 = (R: -36)

2) Efetue, cancelando os números opostos:

a) 6 + 4 – 6 + 9 – 9 = (R: +4)
b) -7 + 5 – 8 + 7 – 5 = (R: -8)
c) -3 + 5 + 3 – 2 + 2 + 1 = (R: +6)
d) -6 + 10 + 1 – 4 + 6= (R: +7)
e) 10 – 6 + 3 – 3 – 10 – 1 = (R: -7)
f) 15 – 8 + 4 – 4 + 8 – 15 = (R: 0)

3) Coloque em forma simplificada ( sem parênteses)

a) (+1) + (+4) +(+2) = (R: 1 +4 + 2)
b) (+1) + (+8) + (-2) = (R: 1 + 8 – 2)
c) (+5) +(-8) + (-1) = (R: +5 – 8 – 1)
d) (-6) + (-2) + (+1) = (R: -6 – 2 + 1)

4) Calcule:

a) (-2) + (-3) + (+2) = (R: -3)
b) (+3) + (-3) + (-5) = (R: -5)
c) (+1) + (+8) +(-2) = (R: +7 )
d) (+5) + (-8) + (-1) = (R: -4)
e) (-6) + (-2) + (+1) = (R: -7)
f) (-8) + ( +6) + (-2) = (R: -4)
g) (-7) + 6 + (-7) = (R: -8)
h) 6 + (-6) + (-7) = (R: -7)
i) -6 + (+9) + (-4) = (R: -1)
j) (-4) +2 +4 + (+1) = (R: +3)

5) Determine as seguintes somas

a) (-8) + (+10) + (+7) + (-2) = (R: +7)
b) (+20) + (-19) + (-13) + (-8) = (R: -20)
c) (-5) + (+8) + (+2) + (+9) = (R: +14)
d) (-1) + (+6) + (-3) + (-4) + (-5) = (R: -7)
e) (+10) + (-20) + (-15) + (+12) + (+30) + (-40) = (R: -23)

6) Dados os números x= 6, y = 5 e z= -6, calcule

a) x + y = (R: +11)
b) y + z = (R: -1)
c) x + z = (R: o)

SUBTRAÇÃO

Continua na parte 5

 

APOSTILA PARA FORMAÇÃO DE SARGENTO FAB 2019

APOSTILAS PARA TODOS OS CARGOS IFPB 2019

APOSTILA PARA ASSISTENTE DE ADMINISTRAÇÃO UFAC 2019

CONFIRA AQUI AS MELHORES APOSTILAS DO MERCADO!!

Deixe uma resposta

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *