NÚMEROS FRACIONÁRIOS E DECIMAIS:
Durante muito tempo, os números naturais eram os únicos números que o homem utilizava. Mas, com o passar do tempo, o homem foi encontrando situações mais difíceis para resolver. No antigo Egito, por exemplo, as terras próximas ao rio Nilo eram muito disputadas por isso os faraós tinham funcionários que mediam e demarcavam os terrenos.
Eles usavam cordas com nós separados sempre pela mesma distância. Em muitos casos, principalmente para efetuar medições, precisou criar outros números que não fossem apenas os números naturais. Surgiram assim, os números fracionários ou racionais.
Para representar os números fracionários foi criado um símbolo, que é a fração. Sendo a e b números racionais e b ≠ 0, indicamos a divisão de a por b com o símbolo a : b ou, ainda a/b
Chamamos o símbolo a/b de fração.
Assim, a fração 10/2 é igual a 10 : 2
Na fração a/b, a é o numerador e b é o denominador
Efetuando, por exemplo, a divisão de 10 por 2, obtemos o quociente 5.
Assim, 10/2 é um número natural, pois 10 é múltiplo de 2.
Mas efetuando a divisão de 3 por 4 não obtemos um número natural. Logo ¾ não é um número natural. A fração envolve a idéia de alguma coisa que foi dividida em partes iguais.
Agenor comeu ¾ de uma barra de chocolate. Que quantidade de chocolate Agenor comeu? Que parte da barra de chocolate sobrou?
Dividindo o chocolate em 4 partes, iguais temos;
Agenor comeu ¾ , portanto sobrou ¼
LEITURA DE UMA FRAÇÃO
Algumas frações recebem nomes especiais: as que têm denominadores 2,3,4,5,6,7,8,9
½ um meio
¼ um quarto
1/6 um sexto
1/8 um oitavo
2/5 dois quintos
9/8 nove oitavos
1/3 um terço
1/5 um quinto
1/7 um sétimo
1/9 um nono
4/9 quatro nonos
16/9 dezesseis nonos
as que tem denominadores 10, 100, 1000, etc………….
1/10 um décimo
1/100 um centésimo
1/1000 um milésimo
7/100 sete centésimos
as decimais que são lidas acompanhadas da palavra avos :
1/11 um onze avos
7/120 sete cento e vinte avos
4/13 quatro treze avos
1/300 um trezentos avos
5/19 cinco dezenove avos
6/220 seis duzentos e vinte avos
EXERCÍCIOS
1) indique as divisões em forma de fração:
a) 14 : 7 = (R: 14/7)
b) 18 : 8 = (R: 18/8)
c) 5 : 1 = (R: 5/1)
d) 15 : 5 = ( R: 15/5)
e) 18 : 9 = (R: 18/9)
f) 64 : 8 = (R: 64/8)
2) Calcule o quociente das divisões
a) 12/3 = (R:4)
b) 42/21 = (R: 2)
c) 8/4 = (R: 2)
d) 100/10 = (R: 10)
e) 56/7 = (R:8)
f) 64/8 = (R: 8 )
3) Em uma fração, o numerador é 5 e o denominador é 6
a) Em quantas partes o todo foi dividido? (R: 6)
b) Quantas partes do todo foram consideradas? (R: 5)
4) Escreva como se lêem as seguintes frações:
a) 5/8 (R: cinco oitavos)
b) 9/10 (R: nove décimos)
c) 1/5 (R: um quinto)
d) 4/200 ( R: quatro duzentos avos)
e) 7/1000 (R: sete milésimos)
f) 6/32 (R: seis trinta e dois avos)
TIPOS DE FRAÇÕES
Continua na parte 10