Sistema de equação do 1º grau
Os sistemas de equação são ferramentas muito comuns na resolução de problemas em várias áreas (matemática, química, física, engenharia,…) e aparecem sempre em concursos e exames, como é o caso do vestibular. Os sistemas, geralmente, são resolvidos com uma certa facilidade o que causa muitas vezes uma desatenção, por parte do aluno, já que ele não tem dificuldade para encontrar a solução do sistema. Mas ele esquece que a dificuldade está na armação e principalmente na solução final da questão. Os sistemas são ferramentas que mesmo funcionando necessitam de alguém que saiba o construir com elas.
II – MÉTODOS DE RESOLUÇÃO DE SISTEMAS DE EQUAÇÕES DO 1º GRAU
Além de saber armar o sistema é bom saber fazer a escolha pelo método mais rápido de resolução.
Vou apresentar três métodos sendo que o mais utilizado é o método da adição.
1º) método da adição
Este método consiste em deixar os coeficientes de uma incógnita opostos. Desta forma, somando-se membro a membro as duas equações recai-se em um equação com uma única incógnita.
EXEMPLO:
1º passo: vamos multiplicar a primeira linha por -1 para podermos cortar –2x com 2x
2º passo: Substituir y = – 2, em qualquer um das equações acima e encontrar o valor de x.
3º passo: dar a solução do sistema.
S = { (4, -2) }
2º) método da substituição
Este método consiste em isolar uma incógnita numa equação e substituí-la na outra equação do sistema dado, recaindo-se numa equação do 1º grau com uma única incógnita.
EXEMPLO:
1º passo: vamos isolar o y na primeira equação para podermos substituir na Segunda equação.
2º passo: Substituir y = 6 – 2x, na segunda equação para encontrar o valor de x.
3º passo: Substituir x = 4 em y = 6 – 2x, para encontrar o valor de y.
y = 6 – 2x
y = 6 – 2.4
y = 6 – 8
y = -2
4º passo: dar a solução do sistema.
S = { (4, -2) }
Sistema de equação do 2º Grau
Os sistemas de equações nada mais são do que estratégias que nos permitem resolver problemas e situações que envolvem mais de uma variável e pelo menos duas equações. Se as equações presentes no sistema envolverem apenas a adição e a subtração das incógnitas, dizemos que se trata de um sistema de equações do 1° grau. Podemos resolver esse sistema de duas formas, através da representação gráfica ou algebricamente. Na forma algébrica, dispomos de duas alternativas, o método da adição ou da substituição.
No caso de uma multiplicação entre as incógnitas ou, simplesmente, de uma delas aparecer como uma potência de expoente 2, dizemos que o sistema envolve também equações de 2° grau. Para resolver um sistema desse tipo, as estratégias são as mesmas citadas anteriormente, mas podem haver mais soluções nesse caso.
Exemplo 1
Isolando x ou y na 2ª equação do sistema:
x + y = 6
x = 6 – y
Substituindo o valor de x na 1ª equação:
x² + y² = 20
(6 – y)² + y² = 20
(6)² – 2 * 6 * y + (y)² + y² = 20
36 – 12y + y² + y² – 20 = 0
16 – 12y + 2y² = 0
2y² – 12y + 16 = 0 (dividir todos os membros da equação por 2)
y² – 6y + 8 = 0
∆ = b² – 4ac
∆ = (–6)² – 4 * 1 * 8
∆ = 36 – 32
∆ = 4
a = 1, b = –6 e c = 8
Determinando os valores de x em relação aos valores de y obtidos:
Para y = 4, temos:
x = 6 – y
x = 6 – 4
x = 2
Par ordenado (2; 4)
Para y = 2, temos:
x = 6 – y
x = 6 – 2
x = 4
Par ordenado (4; 2)
S = {(2: 4) e (4; 2)}
Fonte: mundo educação e Brasil escola
Caso você queira estudar sobre equações do 2º Grau, Clique Aqui!
E você, qual o concurso você vai fazer? Deixe um comentário para mim, pois posso fazer postagens direcionadas para ele e te ajudar mais. Aproveita também para inscrever seu e-mail para receber conteúdos todos os dias.
Dica: Para você que não esta encontrando o conteúdo que precisa ou prefere estudar por apostilas dá uma olhada no site Apostilas Opção, lá eles tem praticamente todas as apostilas atualizadas de todos os concursos abertos.